

Kylt® Influenza A - M/H9/N2

Real-Time RT-PCR Detection

Kylt® Influenza A - M/H9/N2

Real-Time RT-PCR Detection

A. General

- Kylt® Influenza A M/H9/N2 kits are intended for the specific and seperate detection of viral RNA of Influena Virus Type A as well as subtypes H9 and N2. The kits are suitable for the analysis of samples from birds, such as swab samples (e.g. nasal, cloacal or tracheal), tissues and organs (e.g. trachea, lung, cecal tonsils) and samples from cultural processes with the aforementioned sample material (e.g. cell culture supernatant, allantoic fluid).
- The qualitative testing with Kylt® Influenza A M/H9/N2 kits is based on a multiplex Real-Time RT-PCR: In one reaction setting, the RNA target sequences for Influenza Virus Type A, subtypes H9 and N2 as well as for the endogenous control (beta-Actin) are reverse transcribed (Reverse Transcription (RT)) and amplified in parallel with respective primer pairs in the Polymerase Chain Reaction (PCR). Amplified target gene fragments are detected via fluorescently labeled probes during the PCR reaction in real-time (Real-Time PCR). The probes specific for detection of amplified Influenza Virus Type A, subtypes H9 and N2 and the endogenous control target genes are labeled with fluorescent dyes FAM, TXR, Cy5 and HEX, respectively, and their emitted fluorescence is separately optically measured by the Real-Time PCR thermal cycler. By means of all four individual analyses in one reaction vessel per sample and the Negative Control and Positive Control per run the Influenza Virus Type A and subtype H9 and N2-specific status of a sample can be evaluated in the end. This way, results can be achieved within a few hours after sample receipt.
- These kits were developed for use by trained laboratory personnel following standardized procedures. This Direction For Use must be followed strictly.

B. Reagents and Materials

■ The following Kylt® Influenza A - M/H9/N2 kits are available and comprise the following reagents:

Reagent	Colour of Lid	100 Reactions Article No 31875	25 Reactions Article No 31876	Store at
2x RT-qPCR-Mix	○ transparent	4 x 280 μl	1 x 280 μl	≤-18 °C
Detection-Mix	violet	4 x lyophilizate (final 150 µl each)	1 x lyophilizate (final 150 μl each)	≤ -18 °C
Positive Control	red	4 x lyophilizate (final 50 μl each)	2 x lyophilizate (final 50 μl each)	≤-18 °C
Negative Control	blue	1 x 1 ml	1 x 1 ml	≤-18 °C

- After receipt, the components are immediately stored at ≤ -18 °C. Avoid repeated freezing and thawing of all the reagents and keep them thawed as short as possible.
- If occasional processing of few samples only is expected you may prepare appropriate aliquots of reagents before storage at ≤ -18 °C. Prepare aliquots in such a way that freeze-thaw-cycles are reduced to a maximum of three. The Negative Control can alternatively be stored at +2°C to +8°C.
- The components are to be used within the indicated shelf life (see box label). The components of different batches may not be mixed.
- Before its first use, rehydrate the <u>Positive Control</u>: add 50 µl of Negative Control per vial, briefly incubate at room temperature and mix thoroughly by repeated vortexing. It is recommended to generate aliquots of suitable volumes and store them at ≤ -18 °C.
- The <u>Detection-Mix</u> needs to be stored protected from abundant light. Do not expose to direct (sun)light. Before first use, rehydrate the lyophilized Detection-Mix: add 150 μl of the Negative Control per vial of Detection-Mix, briefly incubate at room temperature and mix by pulse-vortexing. Generate aliquots of suitable volumes and store them at ≤ -18 °C.

C. Equipment and Reagents not included

- This detection method can be used on all commercially available Real-Time PCR thermal cyclers that detect the emitted fluorescence of the fluorescent dyes FAM, HEX, Cy5 and TXR (emission 520, 550, 670 and 620 nm, respectively). Note that default normalization option against ROX (e.g. using ABI cyclers) must be deactivated.
- Apart from the disposables, the following further devices are needed and are not included in the Kylt® Influenza A M/ H9/N2 kits:
 - RNA preparation kit / protocol (e.g. Kylt® RNA / DNA Purification products)
 - Table top microcentrifuge
 - Vortex
 - Micropipettes covering volumes of 1 μl to 1000 μl
 - Centrifuge for PCR tubes or plates
- Accessory Kylt® products: see chapter F "Related and Accessory Products".
- We recommend the exclusive use of certified Nuclease-free disposables as well as powder-free protective gloves. Please wear gloves during the entire experimental procedure. Gloves need to be changed frequently, especially after spillage or suspected contaminations.

D. Control Reactions

- The <u>Positive Control</u> allows for control of the specificity and efficiency of the reagents and the reaction itself, including the performance of RT and Real-Time PCR and of the Real-Time PCR thermal cycler.
- The <u>Negative Control</u> allows for exclusion of contaminations. The sample testing is only valid if both, Positive and Negative Controls, are used and verified for validity in every Real-Time PCR run.
- The <u>Internal Control</u> is additionally based on <u>detection of beta-Actin RNA</u>, which is ubiquitous in the cells of the host that the sample is derived from. The beta-Actin RNA/endogenous RNA target gene is co-amplified (channel HEX) with every single reaction and allows for evaluation of sufficient sampling, sample storage and shipment, sample preparation and the Real-Time RT-PCR run itself.
- It is recommended to run one or more of a <u>RNA Isolation Control (RIC)</u> per set of RNA preparation, depending on the total number of samples processed at once. The RIC is a "mock sample" composed of the plain sterile buffer used for raw sample processing. It is randomly placed between the samples, processed like a normal sample and allows to detect potential contaminations of the reagents used (additionally to the Negative Control reaction) as well as for the detection of potential carryover contaminations between individual samples, e.g. during the RNA preparation process.

E. Protocol (see also "Protocol At A Glance" at the end of this Direction For Use)

- The overall protocol of the analysis consists of the following main workflow:
 - 1. Sample Preparation
 - 2. RNA Preparation
 - 3. Reaction Setup, Reverse Transcription and Amplification (Real-Time RT-PCR)
 - 4. Data Analysis Validity and Qualitative Result
- We recommend proceeding through the protocol without interruption to avoid potential degradation of the processed samples and reagents. If necessary, you may store the final RNA preparation at \leq -18 °C or \leq -70°C until further processing. Avoid repeated freezing and thawing of the RNA preparations.

1. Sample Preparation

- We recommend <u>pooling</u> of at most five samples or samples from five individuals, respectively, per RNA preparation.
- Pool <u>swabs</u> in a sufficient volume of sterile buffer (e.g. 1 ml of Normal Saline or 0.1 x TE), let the swabs soak for an adequate period of time and finally wash out the swabs by thorough pulse-vortexing. The washed out supernatant is used for RNA preparation.
- <u>Tissue and organ</u> samples are homogenized thoroughly in sterile buffer (see above) and a suitable volume is used for the RNA preparation.
- Material derived from cultural processes, i.e. cell culture supernatant or allantoic fluid, can be used directly for RNA preparation.

2. RNA Preparation

a) Kylt® RNA Preparation (requires Kylt® RNA / DNA Purification products (available separately))

For detailed information on the RNA preparation process please refer to the manual of Kylt® RNA / DNA Purification products.

b) RNA Preparation by other Methods

• Other kits or in-house methods to purify RNA may be used, as long as the quality leads to satisfactory amplification and detection of the Internal Control RNA.

3. Reaction Setup and Amplification (Real-Time RT-PCR)

- Before each use, briefly vortex and spin down the 2x RT-qPCR-Mix, rehydrated Detection-Mix and Negative Control.
- To determine the total number of reactions needed, count the number of samples and add two more for the Negative Control and the Positive Control (and RIC(s), if processed).
- Prepare the Master-Mix using the components listed below. A larger volume of a ready to use Master-Mix can be prepared and stored at ≤ -18 °C for convenient use over a longer period of time up to the expiry date given on the label. In case of frozen storage the Master-Mix should be aliquoted in such a way that freeze-thaw-cycles are reduced to a maximum of three.
- Vortex, spin down and add 16 μl of the finalized Master-Mix to each of the PCR tubes or plate wells ("cavities").

		Volume (μΙ)
Reagent	per Reaction	e.g. n=7
2x RT-qPCR-Mix	10 μΙ	70 μΙ
Detection-Mix	6 μΙ	42 μΙ
Total Master-Mix	16 µl	112 μl dispense 16 μl per reaction
RNA (Negative Control / sample RNA / RIC(s) / Positive Control)	4.0 μΙ	
Total Reaction	20.0 μΙ	

- Keep exposure of the 2x RT-qPCR-Mix, Detection-Mix and prepared Master-Mix to (sun)light as short as possible and return it back to appropriate storage temperature right after application. Avoid the formation of bubbles when pipetting the Master-Mix, samples and controls.
- Add 4 µl of the Negative Control to the corresponding cavity and seal it individually, if possible.
- Add 4 μl of each RNA preparation (including RIC(s), if processed) to the corresponding cavities and seal them individually, if possible.
- To minimize risk of potential cross-contaminations, 4 μl of the <u>Positive Control</u> are added to the corresponding cavity after all previous samples and control reactions are set up. Before each use, briefly vortex and spin down the rehydrated Positive Control (see also chapter B "Reagents and Materials").
- If not already done, finally seal the cavities. It is recommended to briefly spin them down before the start of the Real-Time PCR run.

■ Place the cavities in the Real-Time PCR thermal cycler and run the test with Kylt® Profile I as given below.

Kylt® Profile I					
Step No	Description	Temperature	Duration		
1	Reverse Transcription	50 °C	10 min		
2	Activation of Polymerase	95 °C	1 min		
3	Denaturation	95 °C	10 sec)	
4	Annealing & Extension	60 °C	1 min	42 cycles	
5	Fluorescence Detection	channels FAM, HEX, Cy5 and TXR		J	

- Kylt® Profile I allows for combined run of this and most other Kylt® RT-qPCR detection methods as well as Kylt® PCR detection products.
- In the event of a combined Real-Time RT-PCR run, make sure all necessary channels are detected.
- Please follow the specified instructions of your Real-Time PCR thermal cycler as recommended by the manufacturer.

4. Data Analysis - Validity and Qualitative Result

General

- The amplification data can be processed automatically using the specific software tool of your Real-Time PCR thermal cycler. Alternatively, the threshold can be set manually considering the following directions: The threshold should cross the FAM-, TXR- and Cy5-curves as well as the HEX-curve in the linear increase of their slope (log scaling of the y-axis). By setting the threshold, the crossing points with the HEX-, FAM-, Cy5- and TXR-curves determine the respective cycle threshold (Ct), which is negatively correlated with the initial concentration of copies of the target genes in the Real-Time RT-PCR reaction.
- Only curves with the typical exponential amplification, meaning the curve of the raw data shows a flat baseline at the beginning, followed by a clear (exponential) slope in fluorescence and possibly reaching a plateau-phase (y-axis in log scaling), should be regarded as positive.
- The actual test analysis starts with the validity check of the entire Real-Time RT-PCR run. Afterwards, by means of the Internal Control the validity of each sample reaction and its true test result can be verified according to the Ct-value of the Internal Control channel (HEX). Finally, the Influenza Virus Type A and subtypes H9 and N2-specific status of each sample is analyzed (FAM, Cy5, TXR).

Test Evaluation

- The Real-Time RT-PCR test run is only valid if the FAM-, Cy5- and TXR-curves of the Negative Control are negative and the FAM-, Cy5- and TXR-curves of the Positive Control are positive. For a valid test the FAM-, Cy5- and TXR-Ct-values of the Positive Control have to be > 15 and ≤ 35.
- The HEX-curve of the Negative Control is negative (Ct > 35) and the HEX-curve of the Positive Control is positive (Ct ≤ 35).
- If one or more of a RNA Isolation Control (RIC(s)) is processed, its FAM- and HEX-curves must be negative (Ct > 35 for HEX-curves).

Target	Channel	Signal					
Internal Control	HEX	positive	pos / neg	pos / neg	pos / neg	pos / neg	negative
Influenza Virus Type A	FAM	negative	positive	positive	positive	positive	negative
Influenza A subtype H9	TXR	negative	negative	positive	negative	positive	negative
Influenza A subtype N2	Cy5	negative	negative	negative	positive	positive	negative
The sample is Influenza Type A		negative	positive	positive	positive	positive	inhibited
The sample is Infl. A subtype H9		negative	negative	positive	negative	positive	inhibited
The sample is Infl. A subtype N2		negative	negative	negative	positive	positive	inhibited

- A sample is negative for Influenza Virus Type A, if its HEX-curve is positive (Ct ≤ 35), but its FAM-, Cy5- and TXR-curves are negative.
- A sample is positive for Influenza Virus Type A, if its FAM-curve is positive (Ct ≤ 42), independent of the HEX-, Cy5- and TXR-curves.
- A sample is positive for Influenza Virus Type A and subtype H9, if its FAM- and TXR-curves are positive (Ct ≤ 42), independent of the HEX-, and Cy5-curves.
- A sample is positive for Influenza Virus Type A and subtype N2, if its FAM- and Cy5-curves are positive (Ct ≤ 42), independent of the HEX- and TXR-curves.
- A sample is positive for Influenza Virus Type A and subtypes H9 and N2, if its FAM-, TXR- and Cy5-curves are positive (Ct ≤ 42), independent of the HEX-curve.
- A sample is inhibited if neither the FAM-, Cy5- and TXR-curves nor the HEX-curve are positive.
- **Recommendation:** In the case of an inhibited sample you may repeat the test by using e.g. 1:4 dilution of the respective RNA preparation. The Negative Control is used as the diluting agent. Preferably, the entire RNA preparation process is repeated using Kylt® RNA/DNA Purification products or appropriate alternative.
- Convenient and reliable sample data entry, Real-Time PCR start, final qualitative analysis and documentation can be conducted with the Kylt® Software, please inquire.

RT-qPCR.AIV.MH9N2.02, Rev001, October 2019

F. Related and Accessory Products

Product	Article No	Reactions	Description
Kylt® RNA / DNA Purification	31314 / 31315	250 / 50	Combined RNA and DNA purification from veterinary samples
Kylt® RNA / DNA Purification HTP	31826	4x96	Combined, magnetic beads-based purification of RNA and DNA from veterinary samples, suitable for automated high throughput processing

Production:

AniCon Labor GmbH | Muehlenstr. 13 | D-49685 Hoeltinghausen | Germany | www.kylt.eu | info@kylt.eu

Development, manufacturing and distribution of Kylt® *In-Vitro* Diagnostica is certified according to ISO 9001:2015.

Management System ISO 9001:2015

TÜVRheinland
CERTIFIED

www.tuv.com
ID 9108634298

 $\hbox{Kylt}^{\hbox{\scriptsize @}} \hbox{ is a registered trademark}.$

For veterinary use only. For *in vitro* use only. Regulatory requirements vary by country, not all of the products described herein may be available in your geographic area.

© 2019 AniCon Labor GmbH. All rights reserved. The trademark mentioned herein is the property of AniCon Labor GmbH or their respective owners

PROTOCOL AT A GLANCE

Real-Time RT-PCR Setup

Prepare a Master-Mix* + 10 µl 2x RT-qPCR-Mix + 6 µl Detection-Mix * please refer to chapter 3 Pulse-vortex and spin down **Vortex** Dispense Master-Mix and add 4 μl NC, RNA preparation, PC + 4 μl NC, RNA preparation, PC Seal cavities, spin down (recommended), and start cycler Analysis normalized fluorescence exponential phase threshold negative sample